Complex Network Geometry and Frustrated Synchronization
نویسندگان
چکیده
منابع مشابه
Complex Network Geometry and Frustrated Synchronization
The dynamics of networks of neuronal cultures has been recently shown to be strongly dependent on the network geometry and in particular on their dimensionality. However, this phenomenon has been so far mostly unexplored from the theoretical point of view. Here we reveal the rich interplay between network geometry and synchronization of coupled oscillators in the context of a simplicial complex...
متن کاملEnhancing complex-network synchronization
– Heterogeneity in the degree (connectivity) distribution has been shown to suppress synchronization in networks of symmetrically coupled oscillators with uniform coupling strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in weighted networks with asymmetric coupling. We show that, in the optimum regime, synchronizability is solely determined by the averag...
متن کاملEmergent Complex Network Geometry
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their d...
متن کاملSpeed of complex network synchronization
Synchrony is one of the most common dynamical states emerging on networks. The speed of convergence towards synchrony provides a fundamental collective time scale for synchronizing systems. Here we study the asymptotic synchronization times for directed networks with topologies ranging from completely ordered, grid-like, to completely disordered, random, including intermediate, partially disord...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-28236-w